About the Center

UC San Diego researchers at the Center for Machine-Intelligence, Computing and Security are integrating hardware, software and massive data sets in new ways in order to invent the future of machine learning, real-time data analytics, deep learning, security and privacy. Advances in the integration of hardware, software, algorithms and data are necessary for developing new generations of systems that make decisions and take actions based on data that are collected and analyzed in real time. Our team is continually on the cutting edge of innovation. The team, for example, was the first to report real-time analysis of streaming data using machine learning algorithms running on mobile platforms and other resource-constrained platforms such as drones. 

Real-Time Data Analytics

Hardware, software and algorithm co-design for real-time data analytics. Our customized performance optimization engine is automated and works across platforms, from low-power sensors to data centers and the cloud. Our solutions integrate adaptive data collection processes with training, learning, and inference in real-time and streaming applications.

Paradigm Shift in Deep Learning

Automated acceleration and adaptive retraining of deep learning. Our framework allows for training of deep learning networks that are platform independent, and scale from sensors to mobile to data centers. We introduced a paradigm shift when we built and demonstrated the first training of deep learning on Edge devices.

Security & Privacy for Cyber-Physical Systems 

To secure cyber-physical systems, we fully consider hardware, software, algorithms and data - and their isolation and interactions. We offer new approaches to security and privacy. Safe machine learning / defense against adversarial attacks, secure embedded medical devices, and privacy-preserving computing (DNA, learning, biometrics) are examples.

Our work is crucial for developing scalable and secure machine intelligence for cloud computing, data centers and many other autonomous and semi-autonomous applications including surgical robots, imaging systems and low-power sensor networks.

One key technological hurdle that must be cleared to develop these kinds of systems is the ability to analyze – on the edges of networks – massive data sets coming in from multiple sources in real time. This will require advanced machine learning algorithms to be training in real time on mobile platforms and embedded systems that are constrained by power, computational resources and bandwidth.

These machine learning algorithms will also need to process incoming data in real time, and adapt their behavior accordingly. In this way, real-time data analytics on mobile and embedded computing platforms will guide real-time decision making, and real-world actions taken by autonomous systems.

Our researchers are integrating hardware, software and massive data sets in new ways in order to invent this future. 


Integrating hardware, software, algorithms and data for scalable analytics and security is at the core of what we do.

Real-time and Interactive Machine Learning
Our customized performance optimization engine is automated and works across platforms. The process starts with automated measurement of the hardware. The system then abstracts out the key hardware characteristics. These abstracted hardware details are then integrated with the machine learning algorithms as well as the data in order to optimize the machine-learning computations based on the limits of the hardware being used as well as the characteristics of the data.

This approach offers research collaborators and industry partners opportunities to get significantly better customized hardware acceleration results than are available elsewhere, and to get these results without the expensive, slow process of manually customizing machine learning algorithms based on the particulars of a hardware system.

When the characteristics of the data change, the systems reassess and rebalance how and where the computations take place on the hardware.

“We can cope with dynamics of the data and dynamics of the hardware platform,” said electrical engineering professor Farinaz Koushanfar, co-director of the UC San Diego Center for Machine-Intelligence, Computing and Security.

The customized and automated hardware-software integration approach provides researchers with the ability to do serious data analytics on mobile and embedded platforms, often in real time.

These solutions often integrate adaptive data collection processes with training, learning, and inference in real-time and streaming applications.


Optimized Deep Learning
The Center’s hardware-software-algorithms-data integration approaches allow for more than real-time training of data using a broad class of machine learning algorithms on mobile platforms. The approach also allows training of complex deep learning networks on mobile platforms.

“We were the first to report training of a deep learning algorithm on a mobile platform, because we were able to compact things so much,” said Koushanfar. As of September 2017, Koushanfar noted that training of complex deep learning networks is not yet possible on mobile platforms in real time.


Security and Privacy for Cyber-Physical Systems
Through their work at the interface of hardware, software, algorithms and data, the Center is uniquely positioned to engage with industry partners on a wide range of urgent security challenges that are getting more complicated every day. Now that the boundaries of the Internet have extended well beyond traditional computing devices to include the Internet-of-Things (IoT), intelligent vehicles, smart grids and more, the attack domain has expanded further into the physical world and includes even more critical infrastructures.

With the Center’s deep expertise in hardware design as well as hardware-software-algorithm-data integration, the researchers are working on privacy preserving computing systems that can determine “who does what computation where” – which is a key aspect of secure computing.

Secure embedded medical devices and handheld DNA analytics are just two possible outcomes of cutting edge research on privacy preserving computing systems focused on the micro-managing of computations, an approach that is also relevant for IoT security.

“It’s about knowing, and controlling, who holds which permissions to each part of the system. Privacy preserving computing is hard to generalize. There is currently no general way to address IoT security,” Koushanfar said.

Internet-of-Things (IoT) security is one area in which the Center is currently working – and it is extremely challenging. “You need to know who is doing what computations and who holds which permissions when you’re thinking about IoT security,” said Koushanfar. She noted that IoT security is often ad hoc and extremely hard to generalize, meaning there is significant room for innovation. Regrettably, most of today’s solutions are platform dependent and based on adversarial models.


Future Applications and Projects
The automated, customized hardware acceleration tools that the Center has developed are currently tailored for machine learning and deep learning applications. But their approach to automated and customized hardware software integration can be expanded to a much broader group of challenges facing industry. In fact, the approach can efficiently solve inverse problems in areas such as surgical robots, imaging systems, and low-power sensor networks.


Additional New Projects Include:
Interactive machine learning
Optimized integrated sensing
Rapid software development and testing


Industry Partners